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Abstract. Facing the challenges of our environmental crisis, the AEC sector must
significantly lower its carbon footprint and use of first-use resources. A specific
target is the reduction of the amount of concrete used. Funicular structures that
base their strength on their structurally-informed geometry allow for material
efficiency. However, a bottleneck for their construction lies in their costly and
wasteful formworks and complex reinforcement placement.

This research presents an alternative flexible formwork system consisting of
a bending-active gridshell falsework and fabric shuttering for ribbed funicular
concrete shells. The falsework becomes structurally integrated as reinforcement
and is designed as two connected layers offering shape control and sufficient
stiffness to support the wet-concrete load.

The paper focuses on the development of a design-to-fabrication workflow
and a graph-based data structure for gridshell falsework and reinforcement in
the computational framework COMPAS. The implementation utilises, customises
and creates packages for the form finding of the ribbed shell with TNA and the
gridshell with FEA.

The research is based on a demonstrator realised in the context of the
Technoscape exhibition at the Maxxi Museum in Rome, Italy. The computational
workflow was used to design this system and translate it for materialisation. The
demonstrator serves as proof-of-concept for the novel material-efficient construc-
tion system. Its key to efficiency lies in the structurally-informed geometry for
both the formwork and the resulting ribbed concrete shell.

Keywords: Bending-active gridshell · Flexible formworks · Integrated
formwork · Reinforcement · Ribbed concrete shell · COMPAS framework ·
FEA · Double-layered gridshell
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1 Introduction

The critical impact of the construction sector on our environment demands a fundamen-
tal rethinking of design and construction practices towards more sustainable solutions.
This is of particular relevance for reinforced concrete; as the most widely used con-
struction material, a major contributor to global CO2 emissions and resource depletion
(Lehne and Preston 2018). Conventional construction practices often rely on its exces-
sive use to provide structural strength. In contrast, strength can be achieved through
structurally-informed geometry like thin doubly-curved concrete shells with local stiff-
ening articulations (Block et al. 2020). However, their complex shapes require bespoke
formwork systems typically produced with CNC-milled foam or timber, which can be
costly, wasteful, and limited to high-tech construction contexts (García de Soto et al.
2017). Additionally, the manufacturing and installation of custom reinforcement is cost-
and labour-intensive (Waimer et al. 2019).

This paper presents an alternative flexible formwork solution employing geomet-
ric stiffness similar to tensile flexible formwork systems (Popescu et al. 2021). It
utilises active bending, a deliberate-deformation method to elastically bend slender
straight elements into curved geometries without formwork. It allows the construction of
lightweight, material-efficient, self-contained and self-supporting structures that can be
flat-packed for transport and easily deployed (Lienhard 2014). The presented construc-
tion system is a formwork system consisting of a bending-active gridshell falsework and
fabric shuttering for ribbed funicular concrete shells. The strained gridshell is designed
as a double-layered structure to ensure sufficient stiffness and shape control. This false-
work becomes structurally integrated inside the ribbed concrete shell as reinforcement.
Therefore, complex shell reinforcement does not have to be bent in and placed in an
extra tedious construction step.

The focus of this paper is a design-to-fabrication workflow and data structure for
gridshell falsework in the computational COMPAS framework (Van Mele et al. 2017–
2022). This is required for the complex topology and geometry of the double-layered
structure and for an integrative design approach. It enables the reconciliation of the form-
finding geometry for the bending-active falsework and funicular shell, the simultaneous
consideration of fabrication design for both, and the separate structural design with
common focus on stiffness and shape control (Fig. 1).

The research is based on a demonstrator being built in the context of the Technoscape
exhibition at the Maxxi Museum in Rome, Italy. Section 3 describes the system design;
Sect. 4 presents the modelling workflow for such systems based on the case study, and,
Sect. 5 touches on the materialisation and suitability assessment.
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Fig. 1. Integrative design approach.

2 Background

2.1 Funnel-Shaped, Ribbed, Funicular Concrete Shells

Strength through geometry can be achieved with funicular compression-only structures
through formfindingwith Thrust NetworkAnalysis (TNA) (Block 2009). VanMele et al.
(2012) extended TNA to account for tensile members by lifting the necessary condition
for compression-only TNA of convex, non-overlapping edges in the force diagram and
allowing edges to flip orientation to close the force diagram. This enabled Rippmann
and Block (2013) to explore a variety of efficient and expressive funnel shapes designed
as funicular ribbed shells with tension rings.

2.2 Flexible Formwork Systems and Structurally-Integrated Falsework

Tensile flexible formworks are self-supporting, lightweight, waste-saving and
compactly-packageable alternatives to conventional formworks for complex geometries
(Hawkins et al. 2016). Mendez Echenagucia et al. (2019) and Popescu et al. (2021)
utilised textile shuttering on cable-net falsework for expressive shells. However, these
tensioned systems are limited to anticlastic curvature, and the tensile reaction forces
necessitate large boundary structures.
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Bending-active flexible formworks are self-contained, not needing extensive bound-
ary support, and allow both syn- and anticlastic curvatures. Cuvilliers et al. (2017)
demonstrated the use of a strained gridshell as falsework with a passive textile shutter-
ing layer. Popescu et al. (2018) introduced stiffening articulation in both bending-active
formwork and resulting shell. Both examples give the outlook to structurally integrate
the gridshell falsework in hybrid composite action with the resulting concrete shell,
whereas Hack et al. (2020) developed a construction system of passively bent rebar that
serves as formwork and reinforcement for non-standard geometries. Already the pioneer
Nervi (1956) had combined formwork and reinforcement in his Ferro-cement invention
to overcome their bottleneck for complex geometries.

2.3 Bending-Active Structures

Bending-active structures suffer the dilemma of requiring low stiffness for the elastic
forming process and sufficient stiffness to withstand external loads. Thus, gridshells
such as the Multihalle Mannheim are often designed as double-layered systems with
shear connectors (Adriaenssens et al. 2014) – then the splines’ minimum bending radius
is small due to small spline sections with nevertheless, larger structural height.

The form finding of strained gridshells is commonly performed with dynamic relax-
ation for fast simulation or with finite element analysis (FEA) for accurate numerical
modelling and analysis. Bellmann (2017) implemented a built-in function into the com-
mercial FEA-software SOFISTIK (2020) that computes internal bending stresses based
on curved input splines’ initially straight, unstressed states.

2.4 Computational Frameworks

The modelling of gridshells with complex topology and geometry is challenging with
visual programming software that typically stores the data in tree structures without their
connectivity. Instead, the Python-based, open-source framework COMPAS for research
in computational architecture, engineering and construction (VanMele et al. 2017–2022)
provides a versatile graph-based data structure that can be customised and interface with
various COMPAS packages, as in Mendez Echenagucia et al. (2019).

3 System Design

The presented construction system undergoes three main construction stages: the assem-
bly of the bending-active gridshell falsework, the mounting of the fabric formwork and
the in-situ concreting of the ribs of the ribbed funicular concrete shell structure (Fig. 2).
The falsework stays in place after casting and is structurally integrated into the con-
crete as reinforcement. The textile of the faces in between the ribs that stabilises the
shuttering during casting can either be removed or remains as an architectural feature.
Alternatively, it could also be used as shuttering for casting a thin continuous shell
layer. The demonstrator will not include the in-situ concreting step for logistical and
sustainability reasons.
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The geometry of the case study exhibits a funicular funnel shape with a droplet-
shaped opening inspired by soap film explorations by Otto (1988). The ribbed concrete
shell structure is a design descendent and homage of the funicular rib vaults byRippmann
and Block (2013), using a pattern reminiscent of Pier Luigi Nervi’s Palazzetto dello
Sport, which is in close vicinity. The rib pattern is key to the structure’s aesthetics as
it highlights the force flow and is informed by the funicular structural logic. The rib’s
cross-sections are equilateral triangles with sectional dimensions of 18 cm (Fig. 2 –
right). The cross-section is consistently translated along the rib curves, following the
normal orientation of the surface into torsional triangular prisms. The global structure’s
circular outer diameter and maximum height measure 9 m and 3.5 m, respectively. It is
supported by conventional scaffolding props along its perimeter.

Fig. 2. The systems’ three main construction stages.
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3.1 Falsework Plus Reinforcement: Bending-Active Double-Layered Gridshell

The gridshell falsework (Fig. 2 – top) is the support structure for the wet-concrete
load and defines the global shape. It is a double-layered system to ensure sufficient
stiffness and shape control and subsequently serves as reinforcement. The falsework is
materialised using conventional steel rebar, and constructed using typical techniques of
the concrete industry. The mechanical properties of reinforcement steel are just within
the range of suitable materials for bending-active structures that must offer a high ratio
of flexural strength to stiffness (Lienhard 2014). However, compared to typical materials
for strained gridshells like timber or fibre-reinforced polymers, steel offers workability
with a high plasticity that permits the irreversible bending of stirrups.

A trio of continuous 10 mm rebar splines form a rib and cross another rib’s splines
with hinged conditions. To allow for the required minimum curvature of the global
geometry the spline’s highly slender sizing of 10 mm is at its maximum. Consequently,
the structural heightmust be provided by the double-layered system.The three splines are
connected with 6 mm rebar stirrups to space the splines and with a pair of inclined 6 mm
stirrups as shear connectors to stiffen and lock the gridshell into its doubly-curved shape
(Fig. 12). The crossing connections in between the splines are made using wire twist-
ties. These crossing locations and the splines’ overall lengths are extremely important
as they dictate the global geometry.

3.2 Formwork Shuttering: Knitted Textile

The falsework supports and defines the shape of the fabric formwork shuttering into
the prismatic profiles (Fig. 2 – middle). To ensure minimum concrete coverage, custom
spacers are clipped onto the splines and hold thin rods at their extremities to shape
the fabric. The fabric formwork is made of a CNC-knitted textile that provides custom
features and pockets for the rods as in Popescu et al. (2021). Alternatively, the shuttering
could be made of woven textiles with sewn pockets, which would demand more manual
operations and no high technology. For both, the non-prestressed fabric must be stiffened
with a resin or cement paste prior to concrete casting.

3.3 Concrete Shell Structure: Ribbed Funicular Shell

Each trio of splines with fabric wrapping is cast into a reinforced-concrete (RC) rib of
the funicular ribbed shell structure (Fig. 2 – bottom). The geometry is designed as a
compression-only vault with a continuous tension ring along the perimeter balancing
the thrusts under self-weight (Fig. 7). However, for the non-funicular live loading cases,
the concrete ribs and nodes must withstand bending moments, especially because the
topology lacks bracing triangulation. The rebar splines and stirrups provide the required
bending-stiff, non-discrete RC ribs. Thus, the dual role of the gridshell as falsework and
reinforcement is critically important.
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4 Computational Design Modelling Methods

The integrative design of all construction stages and design constraints for both the
formwork system and the concrete shell demands an elaborate computational modelling
workflow from geometric to structural to fabrication design (Fig. 3). The implementation
therefore employs existing COMPAS packages, customises them, and develops new
packages.

Fig. 3. Computational design-to-fabrication workflow.

4.1 Assembly Graph Data Structure

A custom package named compas_flex was developed for versatile data handling of
such flexible formworks and reinforcement of complex geometry and topology with
numerous different parts and connections. It inherits and customises the assembly graph
data structure from the COMPAS library and stores a unique network, mesh or curve
in each graph node and their respective connectivity in its edges. All parts and edges of
the assembly have a unique identifier key and can be called by their attributes such as
position, size, or type (Fig. 4). Separate networks guarantee spline continuity, and the
graph edges store the hinge conditions in their attributes (Fig. 5). Furthermore, virtual
connections between spline networks and the ribbed shell mesh store how different
construction stages relate.
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Fig. 4. Parts of the assembly graph by type.

4.2 Form Finding of Ribbed Concrete Shell

The workflow initiates with the form finding of the funicular shell using the compas_tna
package. For the case study, the input pattern is generated from 48 radial splines that
cross along five equally spaced hoops (Fig. 5 – left). In the form diagram, the tensile outer
ring’s edge attributes are set to tension (Fig. 5 – middle). Tension causes flipping edges
to close the force diagram (Fig. 5 – right). Five vertices of the inner ring and all vertices
of the outer ring are designated as supports after the horizontal equilibrium is found to
ensure exclusively vertical reaction forces under the design loads. The resulting thrust
network finds vertical equilibrium in the desired funnel with a droplet-shaped opening
(Fig. 6 – left).



Design-to-Fabrication Workflow for Bending-Active Gridshells 509

Fig. 5. Input pattern, form diagram, and force diagram.

Even though the equilibrium shape is independent of the shell’s material density, the
loading distribution is decisive for the funicular geometry, differing from a continuous
shell to a ribbed shell by up to 8 cm (Fig. 6 – left). This is due to the varying ratio of
ribbed shell openings to tributary vertex area, as the size of the faces and the skewness
vary. Compas_tna is implemented for continuous shells, and thus its function to update
loads in each iteration for finding vertical equilibrium is retrofit for ribbed shells. All
mesh face-edge polygons are offset. Then, for each vertex, the tributary area of the offset
edges is computed using the cross vector of the face centroid and adjacent half-edges,
and thereafter subtracted from the sum of vertex area of the continuous shell (Fig. 6
– right).

Fig. 6. Thrust networks of continuous versus ribbed shell (left) due to difference of tributary area
distribution (right).
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4.3 Modelling of Double-Layered Gridshell

The resulting funicular shell is the target geometry for the topological and geometric
modelling of the double-layered, bending-active gridshell (Fig. 7). First, the assembly
data structure stores the separate ribs as networks (generated from the mesh edges)
with main attributes {direction, is_ring, at_base} and connectivity to each other and the
mesh. Second, with the compas_occ package, a Python-based COMPAS binding for
OpenCascade3D (2022), the NURBS curves defining the ribs are modelled to generate
tangential frames that are normal to the target geometry to generate the spline trios. Third,
the resulting networks are added as nodes to the assembly graph with their complex
connectivity, especially on the upper layer where four splines cross per node. The spline
geometry is corrected such that the splines intersect at their closest midpoint, and the
networks are updated accordingly. Finally, the splines are subdivided into dense networks
along reconstructed NURBS curves for the FEA input, preserving the initial coarse
network nodes for connectivity. Stirrups (in blue) and inclined shear stirrup pairs (in
pink) are modelled along frames and added to the assembly graph with their specifics in
attributes and connectivity to the splines.

Fig. 7. Modelling of gridshell.

4.4 Form Finding and Structural Simulation of Gridshell

The spline’s lengths and crossing positions are the shape-decisive input for the form
finding of the bending-active structure. The form finding is performed with SOFISTIK
through a direct interface from a custom package named compas_sof to the commercial
FEA software (Fig. 8). Compas_sof translates the attributes of the subdivided networks
into input parameters of sectional values, geometry and connectivity (with hinged or
stiff couplings) into the.dat-file format for the SOFISTIK input (Fig. 8 – left).

In the SOFISTIK procedure, internal active-bending stresses are introduced with the
built-in function such that the system equilibrates with non-linear, third-order analysis
into its deformed form-found shape. This step is computed without the shear stirrups;
they are added in a second step with wet-concrete load to match the physical assembly
process (Fig. 8 – middle).

The FEA results are read out directly from the SOFISTIK.cdb-database by the com-
pas_sof package and stored in the attributes of the parts and connections. The geometry
in COMPAS is then updated with the deflections, and the shape difference (Fig. 8 – right)
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is evaluated and minimised prior to computing the fabrication data (Sect. 4.5). The same
procedure allows setting specific loading distributions for concreting sequences andwind
loads for the structural analysis (Aldinger et al. in preparation).

Fig. 8. Form finding of gridshell.

4.5 Translation to Fabrication Data

The fabrication data is generated from the geometry of compas_flex. From the assembly
nodes, it exports the splines’ unstressed lengths with their key and naming convention
for cutting; from the assembly edges, the crossing locations and connecting element’s
key for marking (Fig. 9). Further, the surfaces of the textile shuttering are generated
with compas_occ and numbered based on the connectivity of the half-edge mesh data
structure. Subsequently, these serve for the knit pattern generation (Popescu et al. in
preparation).

Fig. 9. Fabrication data with assembly graph.
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5 Results

5.1 Materialisation and Construction

Apavilion demonstrator validates thematerialisation of the falsework and reinforcement
system (Fig. 10). The handling is labour-intensive but feasible for unskilled labour.
The complexity lies in the correct assembly order and precise positioning of cross-
ings, labelled and marked based on the fabrication data of unstressed segment lengths
(Sect. 4.5).

Fig. 10. Demonstrator in the construction stage of the completed gridshellmade of bending-active
splines.

5.2 Suitability of Double-Layered Gridshells as Concrete Falsework

The shear stirrups (Fig. 11) dramatically improve the stiffness and restrain the shape
in both the physical prototype (where it was strongly noticeable) and in the simulation.
Their distribution and shape result from a sensitivity study. Figure 12 shows that in an
FE-analysis with wet-concrete load, deformations are approximately half and buckling
load factors are approximately double for a gridshell with shear connectors instead of
normal stirrups only. While the separate-layer model only converges with a third of the
wet-concrete load.
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Fig. 11. Stirrup and shear stirrups of the gridshell.

Fig. 12. Comparison of deformation and buckling load factors of double-layered gridshell under
wet-concrete load.

6 Discussion and Outlook

Activating the structural height of the double-layered gridshell with shear connectors
makes the proposed system a valid falsework solution. However, the sensitivity lies in
the global shape accuracy toward spline lengths and crossing positions.

Further research will investigate the structural analysis with sensitivity studies and
concrete loading sequence, the physical assembly logistics, and the demonstrator’s con-
struction, quantifying tolerances and stiffening (Aldinger et al. in preparation). The
demonstrator validates the system design (Bodea et al. in preparation) with the knit
(Popescu et al. in preparation) and the design-to-fabrication workflow as well as demon-
strates the potential of the construction system for the efficient shaping of syn- and
anticlastic-curved ribbed shells.

The computational development with COMPAS allows the use and customisation of
existing packages as well as the creation of new packages resulting in a reproducible,
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comprehensible and generalisable workflow for such construction systems. The assem-
bly data structure offers high control of the geometric, structural and fabrication design
with complex topology and geometry.

The computational workflow allowed the form finding and design of a structural and
construction system so that the key to efficiency for both the flexible formwork and the
funicular concrete shell lies in their structurally-informed geometry. Thus, unlike the
conventional CNC-milled moulds, the formwork system is less wasteful and not limited
to high-tech construction contexts. Even though it is labour-intensive, no additional
reinforcement installation step is required. As an outlook, such a construction system
could find application in bridges, vaulted roofs or vaulted rib-stiffened floors with an
additional continuous shell layer. All this could make the system applicable to a wide
range of construction contexts and mitigate the environmental crisis by reducing the
material consumption of both formwork and concrete structure.
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